Browsing Category

Pulmonology

Pulmonology

CF Research Cooperative Expands Patients’ Options

A mother helps her son use a nebulizer. (Stock photo)

In the last few decades, scientific collaboration has played a vital role in improving quality of life and extending life expectancy for patients with cystic fibrosis (CF). Now, the members of a new cooperative hope that sharing their research and expertise will lead to more progress. The Southeast Cystic Fibrosis Research Cooperative connects specialists from about two dozen high-volume centers across the Southeast region, including Children’s of Alabama. Members have been meeting for the last year with the goal of advancing a sea change in available CF treatments.

Launched by the Cystic Fibrosis Foundation, the research cooperative blends a social component with the work of effectively treating CF, for which breakthrough therapies targeting gene defects have transformed care in just the last several years. Members of the cooperative—who, in many cases, have attended the same medical conferences over the years—have held virtual meetings in recent months but hope to gather in person as more join the group.

“Our region is big, and our patients are spread out—all the way from eastern Texas to the tip of Florida,” Children’s of Alabama pulmonologist and sleep medicine specialist Christopher “Miles” Fowler, M.D., said. “Every big center is working on different research and has different strengths to offer, so I think we’re all bringing something different to the table.”

About 600 CF patients are receiving treatment at any given time from the combined adult and pediatric program at Children’s and the University of Alabama at Birmingham (UAB). “There are more than 30,000 patients with CF in the United States, and the Southeast represents a big percentage of those patients,” Fowler said.

Accordingly, each CF center in the Southeast is tackling diverse aspects of CF, from groundbreaking gene therapy studies to clinical trials assessing new infection-fighting protocols or ways to optimize nutrition or exercise. UAB will soon be enrolling patients for gene therapy trials, but other centers in the region will be analyzing both similar and different gene therapy endpoints.

“There are going to be different options: The drugs will be different, and the risks will be different,” Fowler explained. “There’s a need to disseminate information about the trials being offered and educate providers about the risks and benefits of the drugs we’re still learning about. That’s been part of our focus.”

Ultimately, CF patients here and elsewhere should greatly benefit from the research cooperative’s efforts, Fowler said. The collaboration makes it easy for patients to learn about trial options and for centers to refer patients to other studies.

“There’s so much going on with cystic fibrosis that I think it’s impossible for any one center to do all of this,” he said. “We all have different resources and expertise that allow us to do the studies we do, so one way the regional cooperative helps is by making more types of studies available to patients in our region.”

Pulmonology

Interventional Pulmonology Now More Common for Kids

New technology is enabling Children’s of Alabama pulmonologists to offer more interventional procedures.

In his career as a pediatric pulmonologist at Children’s of Alabama, Ryne Simpson, M.D., has typically cared for children with conditions such as cystic fibrosis, prematurity and asthma. But as more children born with premature lungs survive and require tracheostomies and ventilators at home, “the flavor of the field has changed a bit,” Simpson said, “and interventional pulmonology is becoming more prevalent in pediatrics.” That’s why earlier this year Children’s began using new technology to offer more interventional procedures to its patients.

Interventional pulmonology is a subspecialty of pulmonary medicine dealing with minimally invasive, advanced bronchoscopic procedures, an example being removal of foreign bodies or other non-native material. Previously, that required surgery or a referral to an otolaryngologist, but both strategies have limitations. “Pulmonologists receive specific training in pediatric lung disease, which a surgeon or ENT physician may not always have,” Simpson said. With specialized equipment, “it can be a better situation for the patient.”

Historically, that equipment has been better suited for use in adults, and adult pulmonologists perform many more interventional procedures than pediatric pulmonologists. Thanks to the development of smaller tools and equipment, Children’s of Alabama can now offer certain interventional procedures to its patients.

One example is flexible bronchoscopic cryotherapy, something previously offered only in the adult setting. Children’s began using it in February 2023. It involves performing a bronchoscopy, then using a special probe to freeze a foreign body, piece of tissue or blood clot and pull it out for examination. “Previously, it could take hours because we often wouldn’t get the whole thing at once,” Simpson said. “Now we’re able to complete these procedures in significantly less time, which has been pretty amazing for the patients.”

Children’s also is working closely with the adult interventional pulmonology program at the University of Alabama at Birmingham (UAB), which has even more sophisticated equipment—such as robotic bronchoscopy—that in some cases is small enough to be used in the pediatric setting.

“It’s been a nice marriage between adult pulmonology at UAB and pediatric pulmonology at Children’s,” Simpson said. The pediatric department has been able to borrow certain equipment or, if needed, send children to UAB pulmonologists for help. “Sort of like: ‘You have the equipment, we have the knowledge, we can work together to get something done that previously we would have never been able to do,’” he said.

Pulmonology

New Protocol Dramatically Improves Outcomes for Children with Acute Chest Syndrome

An initiative led by Dr. Ammar Saadoon Alishlash is helping children with acute chest syndrome.

Acute chest syndrome (ACS) is a respiratory disease that starts suddenly, progresses rapidly and is the leading cause of death in children with sickle cell disease in the U.S. and other countries. However, in the last three years, since Children’s of Alabama instituted a standardized ACS protocol, there have been no ACS-related deaths among the hospital’s patients included in the protocol.

Children’s admits as many as 100 children with ACS every year, and the new protocol has improved outcomes among these patients, decreasing the average number of inpatient days from seven to four (a 42% drop) and reducing ICU admissions and mortality.

“We did not expect such significant results,” pediatric pulmonologist Ammar Saadoon Alishlash, M.D., the leader of the initiative, said. When the initiative began, it was up to each child’s physician whether to follow the protocol or standard procedure because it wasn’t clear if the protocol would actually improve outcomes. “But now we’re pushing to have all patients diagnosed with acute chest syndrome be put on the protocol,” he said.

The protocol is based on the latest evidence on the management of ACS. It includes order sets for tests and medications that are embedded in the electronic medical record, which makes it possible for the patient to receive appropriate care in the emergency room rather than waiting until they’re admitted. It also provides three order sets depending on where the child is in the hospital: in the emergency department, the hematology floor or the ICU. “Each has a specific set of orders designed for that specific population to improve outcomes wherever they are in the hospital,” Alishlash said. The standardization also reduces variation in how physicians treat the patients, which is one reason for the improved outcomes, he said. The protocol involves initiating therapy early in the emergency department before the condition progresses. The main interventions include oxygen supplementation and respiratory support.

To further improve ACS outcomes, Alishlash, who leads the pediatric pulmonary sickle cell disease program at Children’s and the University of Alabama at Birmingham, is performing clinical and laboratory research on the condition. He received a National Institutes of Health grant to study the effects of environmental exposures on its development and to test novel therapies. He has also identified risk factors for ACS, including low oxygen levels during sleep and an association between where the child lives and the condition. “To prevent death in these small children is a great achievement,” he said. “Hopefully it will dramatically improve outcomes in our sickle cell patient community.”

Inside Pediatrics, Pulmonology

New Pulmonary Faculty Join Children’s of Alabama

Spencer Poore, M.D., Ryne Simpson, M.D., and Christopher Fowler, M.D.

Left to right, Spencer Poore, M.D., Ryne Simpson, M.D., and Christopher Fowler, M.D. All three are assistant professors in the Division of Pediatric Pulmonary & Sleep Medicine, University of Alabama at Birmingham Department of Pediatrics.

The Division of Pulmonary and Sleep Medicine at Children’s of Alabama has added three physicians to its team.

Christopher Fowler, M.D.

Christopher Fowler, M.D., is used to the South, having completed medical school at the Medical College of Georgia, his pediatric residency in South Carolina, and his pediatric pulmonary fellowship at the University of Alabama at Birmingham. So leaving simply wasn’t on the table. “I enjoyed being here so much as a fellow that I really wanted to stay and keep working with this awesome team,” he said.

Dr. Fowler entered pediatrics because, as his wife put it, when he was on the pediatrics rotation in medical school, he was happiest and most excited to come home and tell her about his day.

The pulmonology specialty came after caring for his first cystic fibrosis (CF) patients, all of whom were hospitalized with pneumonia. “These kids had a lot going on. And they were very smart. They taught me all about their disease and how they take care of themselves when they’re at home and then how I should take care of them while they were in the hospital. I enjoyed getting to know them and learn from them so much that I decided pulmonology was the thing for me.”

His research focuses on investigating adrenal complications from steroids CF patients take. Chronic use leads to adrenal insufficiency, with symptoms mimicking a respiratory disease. Studies in adults with CF show that about 8 percent develop adrenal problems over a 10-year period, but there are no studies in children, he said. “I don’t know if it’s going to be as big a problem in children as it is in the adults. But I think it’s a good question to answer.”

When he’s not trying to answer complex research questions, Dr. Fowler can be found corralling his own children and playing the drums.

T. Spencer Poore, M.D.

Spencer Poore, M.D., is quite familiar with Children’s of Alabama, having completed his pediatric internship and residency in Birmingham. Now, after three years in Colorado for his pulmonology fellowship, he’s back as one of the pulmonology division’s newest faculty.

He chose Children’s for his first academic position because it provides the opportunity to treat a wide variety of patients, from urban to rural, with common conditions like asthma to extremely rare pulmonary conditions. “I wanted a big program that could expose me to anything and everything,” he said, “as well as springboard me into any direction I wanted to go given its world-renowned experts.”

He brought with him his research on fungal infections and lung inflammation in children with cystic fibrosis. “Fungus is an interesting organism in that in some people it causes infection and in some an allergic reaction,” he said. “And there’s probably some degree of overlap, but we don’t know the pathways. So it feels like chipping away at an iceberg.”

Whatever they find, he said, the recognition should go to the patients. “If it weren’t for the patients willing to help people they’ll never even meet, we couldn’t do this,” he said.

Outside of work, Dr. Poore enjoys cycling, both mountain biking and road biking.

Ryne Simpson, M.D.

Having grown up in Chattanooga, Tennessee, and attended medical school at the University of Tennessee in Memphis, Ryne Simpson, M.D., was not quite prepared for the weather when he completed his residency in Kansas City, Missouri, and his fellowship in Cincinnati, Ohio. So Children’s of Alabama — with its warm climate and proximity to his family — was a perfect fit. “I was tired of the cold Midwestern winters that never ended,” he said.

His focus on pediatric pulmonology comes from the “complex nature of the patients,” he said. “I enjoy that we get to do procedures like bronchoscopy, and also the continuity of working with the patients.”

Dr. Simpson’s prior research focused on identifying best practices for flexible bronchoscopy and chronic ventilation in children based on outcomes and readmission rates. He enjoys such quality improvement and systems process studies, he said, given their more immediate impact on clinical outcomes compared to basic or clinical research. “I don’t always have the mindset for multi-year longitudinal studies,” he said.

Since coming to Birmingham, he’s enjoyed trying new restaurants. Now that he has his own house, he said, he’s looking forward to getting a set of drums “and playing when I want.”

Inside Pediatrics, Pulmonology

Solving the Mystery of Lung Disease in Children with Sickle Cell Disease

Dr-Saadoon-Ammar-Pulmonology-Headhsot-Resized

Children’s of Alabama pulmonologist Ammar Alishlash, M.D.

If lung disease is the leading cause of death in children with sickle cell disease, then why aren’t pulmonologists more involved in their care earlier? That’s a question Children’s of Alabama pulmonologist Ammar Alishlash, M.D., wanted to answer. “I felt for us to take care of those patients, especially those with underlying lung disease, would serve them better clinically,” Dr. Alishlash said. 

In the past, the leading cause of death in those with sickle cell disease was infections. But the use of prophylactic antibiotics changed that. Today, it’s acute chest syndrome (ACS), marked by shortness of breath, low oxygen levels and fever. Many patients progress to respiratory failure, and some die. Yet lung specialists are not usually involved in their care while in the hospital or after discharge. Instead, in most children’s hospitals they are managed solely by hematologists. 

“The problem is, we don’t have any specific treatment targeted for acute chest syndrome,” said Dr. Alishlash. Instead, patients are managed with supportive therapy, including oxygen, fluids, antibiotics and sometimes invasive or non-invasive ventilation. 

Now Dr. Alishlash is on a mission to change that dynamic. He’s launched a three-pronged research initiative: identifying risk factors for ACS to proactively recognize children with a higher risk, developing clinical pathways to prevent progression and mortality and researching novel therapies to treat the condition. 

“I became interested in this condition because I feel that, as pulmonologists, we have experience with other lung diseases,” he said. “We can apply our knowledge from other lung diseases to the sickle cell population, which could open a lot of doors for diagnosis and new treatments.” 

So far, Dr. Alishlash has instituted a clinical pathway to standardize the care children with ACS receive after admission. The pathway has been in place for about 18 months, and the results are encouraging, with a nearly 50 percent reduction in length of stay. In addition, all patients have survived. Previously, one out of every 100 children would die. “That’s pretty significant, especially when you’re talking about children, who are typically between 2 and 4 years of age when they are most likely to develop ACS,” he said. 

Dr. Alishlash has also made progress in identifying risk factors for ACS in children with sickle cell disease. One is nocturnal hypoxemia, when oxygen levels drop at night. This seems to induce the sickling and is associated with increased risk of ACS.1 He also found a correlation between the neighborhood where patients live and ACS, due to, he thinks, air quality, socioeconomic factors and greater stress.2 

On the laboratory side, Dr. Alishlash and his team are using a sickle cell mouse model to test potential treatments as well as identify triggers. One interesting finding is that chlorine can cause sickling, leading to the release of heme from red blood cells, which is toxic to the lung endothelium and subsequent development of ACS. A medication called hemopexin, however, scavenges the free heme. When given to mice exposed to chlorine who developed ACS, hemopexin reduced the death rate from 80 percent to 20 percent.3 

At the same time, Dr. Alishlash has started a twice-monthly clinic for sickle cell patients with underlying lung disease. The clinic is very busy, he said. “And patients’ outcomes are improving, which is very encouraging.” 


1 Nourani AR, Rahman AKMF, Pernell B, et al. Nocturnal hypoxemia measured by polysomnogram is associated with acute chest syndrome in pediatric sickle cell disease. J Clin Sleep Med. 2021;17(2):219–226.

2 Alishlash, AS, Rutland, SB, Friedman, AJ, et al. Acute chest syndrome in pediatric sickle cell disease: Associations with racial composition and neighborhood deprivation. Pediatr Blood Cancer. 2021; 68:e28877

3 Alishlash AS, Sapkota M, Ahmad I, et al. Chlorine inhalation induces acute chest syndrome in humanized sickle cell mouse model and ameliorated by postexposure hemopexin. Redox Biol. 2021;44:102009. doi:10.1016/j.redox.2021.102009

Cardiology, Inside Pediatrics, Pulmonology

Saving Children with Pulmonary Hypertension – One Patient at a Time

Bennett_Pearce_MD_600x284

Children’s of Alabama cardiologist Frank Bennett Pearce, M.D.

When the cardiology team at Children’s of Alabama heard the family history of a 6-year-old boy who presented with an episode of syncope, they knew immediately what was wrong. His father had undergone a double lung transplant at the University of Alabama at Birmingham to cure his pulmonary hypertension (PH). Now his son had been diagnosed with the same thing.  

But that wasn’t the only problem. The boy had also developed a supraventricular tachycardia requiring radiofrequency ablation, which was successful. 

“So we cured that,” said Children’s cardiologist Frank Bennett Pearce, M.D., the boy’s cardiologist. But then the patient continued having episodes of syncope, particularly during exertion. “When that happens in patients with PH, it’s because the blood can’t get through the lungs to the left side of the heart, limiting cardiac output,” said Dr. Pearce. To address that problem, Dr. Pearce and his team performed an atrial septostomy, creating a tiny hole between the atria in the atrial septum. Second problem fixed. 

Discharged on oral medications, the child did well with close follow up for several years, said Dr. Pearce, although he was vulnerable to pneumonia and other infections.  

Then in 2020, at age 13, he took a turn for the worse. “There are three principal metabolic pathways involved in treatment of PH,” said Dr. Pearce. Two—endothelin and phosphodiesterase—have effective oral drugs for treatment. The third, the prostaglandin pathway, is more difficult to address, he said. In the past, it required a central line for IV infusions of treprostinil, a prostaglandin pathway medication. “Most families are very reluctant to go to the central line because it creates major problems in their lifestyle and is a quantum leap in terms of the negative effects on these children,” he said. 

However, treprostinil can also be administered subcutaneously through a small catheter and external pump, much like an insulin pump. Unfortunately, the day the teen was scheduled for cardiac cath and initiation of subcutaneous treprostinil, he became very cyanotic. “We didn’t think it was safe,” Dr. Pearce said. Instead, the boy was admitted to the CVICU on inhaled and oral prostacyclin inhibitors. Despite increasing the dosage, his disease progressed. Finally, the team put him on the intravenous form of treprostinil, and he improved. Eventually, they were able to transition him to the subcutaneous form of the drug via the pump, and he became the first patient at Children’s to be initiated onto subcutaneous treprostinil. 

He’s now home and undergoing evaluation for a lung transplant. “He’s a typical teenage kid but able to deal with all these challenges and keep a pretty good attitude, thanks to support from his family,” said Dr. Pearce. “He just hangs in there.” 

Inside Pediatrics, Pulmonology

Study Shows Long-Term Effectiveness of Ivacaftor in Children and Adults with Cystic Fibrosis

The world of cystic fibrosis was radically changed in 2012 with the approval of the first cystic fibrosis transmembrane conductance regulator (CFTR) modulator, ivacaftor, which targets certain genetic mutations responsible for the disease. Now, a recently published study by the Cystic Fibrosis Foundation’s multi-center Observational Study in People with CF with the G551D Mutation (GOAL) trial (conducted through the Therapeutics Development Network and funded through the Cystic Fibrosis Foundation) finds that ivacaftor remains effective for at least 5.5 years. Study investigators included Children’s of Alabama pediatric pulmonologist Jennifer S. Guimbellot, M.D., Ph.D, Scott Sagel, M.D., Ph.D., at the University of Colorado, and Steven M. Rowe M.D., who directs the Gregory Fleming James Cystic Fibrosis Research Center at the University of Alabama Birmingham (UAB), as well as other GOAL investigators,

The study followed patients who participated in the drug’s original six-month study. Although a small study with 96 participants, 81% continued as throughout the study duration. “To follow them over five years is a big feat,” said Guimbellot. But it allowed the team to understand whether ivacaftor is helpful with long-term use.

While the study found the drug remained effective overall, with clinically important improvements in lung function, pulmonary exacerbations, quality of life, weight gain, and P. aeruginosa infection, there were some differences based on age and baseline lung function. Adults and those with lower baseline lung function experienced greater improvements in lung function at 5.5 years than children and those with higher baseline lung function. As might be expected, quality-of-life improvement was greater in and more sustained in adults who had lower baseline quality of life scores. Importantly, this was the first study to show quality-of-life improvement beyond 2 years.

Another important finding is that while the overall cohort maintained an average lung function above the pre-ivacaftor level, some continued to experience lung function decline, particularly children. Some also continued to experience infections and remained underweight.

This suggests that “there’s something going on that we need to understand better,” Guimbellot said. “It doesn’t mean that ivacaftor doesn’t work for children; it definitely does work for children. It’s just something we don’t understand and there’s still room for improving care.”

One interesting observation is that while most participants gained weight (in part because they didn’t spend as much metabolic energy fighting the lung disease and attendant infections), some gained an unhealthy amount of weight. “This is something we have to pay attention to,” Guimbellot said. This may include revising the typical high-calorie, high-protein, high-fat diet recommended for certain people with CF to a more balanced diet.

The study is important not only because it shows the long-term effects of ivacaftor, she said, but because it can, hopefully, be extrapolated to the newest approved CTFR, a combination of elexacaftor, ivacaftor, and tezacaftor. Unlike ivacaftor, which is effective for just 4% or 5% of the CF population, this combination, approved in 2019, works in up to 90% of people with the disease.

“As a physician who helps diagnose newborns with cystic fibrosis, I am often asked what parents can expect the child’s lifespan to be,” Guimbellot said. Today the median age of survival is 47, but that doesn’t take into account the effect of the CTFR modulators. “With the new drugs,” she said, “we may see a population of children who don’t have the typical findings of cystic fibrosis as long as they adhere to their therapies.”

Inside Pediatrics, Pulmonology

Pulmonology Telehealth Gets Good Reviews

When the pandemic hit in March 2020, most clinics at Children’s of Alabama pivoted to telehealth visits, including pulmonology. Although things have primarily returned to normal with in-person visits, telehealth still has a presence in the outpatient setting.

Given that, an interprofessional team of Pediatric Pulmonary Trainees at the University of Alabama at Birmingham led by Valerie Tarn, MS, RD, LD, training director of the Pediatric Pulmonary Center (PPC), launched a survey to assess how families and clinicians felt about televisits in the pulmonary clinic. “We wanted to evaluate our services and get feedback from our families since many have children with special healthcare needs that require multiple visits per year,” she said. “We wondered if we could do telehealth for every other visit in some populations.”

They surveyed families that had already had a televisit (most used their phones) and those that hadn’t, as well as clinicians who participated in the televisits, to see what, if any, barriers existed as well as collect demographic information.

Most families who had participated in telehealth said they would like to continue for some, but not all, visits. The greatest advantages were avoiding COVID-19 infection and not having to drive to the hospital. The latter is particularly important, Tarn said, since many families drive an hour or more to the clinic. As one parent commented, “This has been wonderful experience! I don’t have to worry about exposing her to COVID or the flu, which is very dangerous for my child. Hope to be able to continue this service in the future!”

About 90 percent of families that hadn’t had a pulmonary televisit reported having Internet access. When asked about potential disadvantages to such visits, they noted the inability to conduct a physical exam. As one parent wrote,  “Please allow the patient to have a choice as to whether or not the appointment is to be in-person or a telehealth appointment.”

Clinicians agreed that telehealth was probably here to stay, Tarn said, but they wanted a more consistent structure. That included prescreening families and finding ways to incorporate other members of the health care team into the visit. “A lot of our patients need to see other health professionals,” she said. “How do you get them to talk with the pharmacist or social worker or nutritionist?” In the spring, the doctors were typically emailing other clinicians or leaving a message in the patient’s secure medical record about the need for follow up.

In the cystic fibrosis clinic, however, nutritionists, social workers, and other allied health professionals rotatedthrough the visit, each taking turns with the iPad. “That worked fairly smoothly,” Tarn said, and could provide a model for other pulmonary clinics.

In the future, the clinicians noted, it would be helpful if patients had home equipment available, such as spirometers, peak flow meters, and weight scales.

But overall, Tarn said, families and healthcare professionals liked telehealth. Now that the surveys have been collected, the PPC trainees plan to present the research results to an interprofessional audience at a local or regional conference.

Inside Pediatrics, Pulmonology

Using Mobile Health To Improve Cystic Fibrosis Care

Gabriela Oates, Ph.D., assistant professor pulmonary and sleep medicine at UAB and Children’s of Alabama, is working to develop a mobile app to to help young children, adolescents and their families manage cystic fibrosis.

It’s not easy living with cystic fibrosis (CF). The multitude of medications, therapies and nutritional supplements that children and adolescents with the disease require can be exhausting and overwhelming, leading to high rates of nonadherence, particularly in adolescents. That’s why Gabriela Oates, Ph.D., an assistant professor of pulmonary and sleep medicine in the University of Alabama at Birmingham (UAB) Department of Pediatrics at Children’s of Alabama, is working to create a mobile health application designed to bridge the gap between what is and what should be when it comes to managing the disease.

The application builds on one developed in Sweden, which 65 to 87% of CF families in that country now use. Called Genia, the app is used to track symptoms, activities and aspects of daily care and share them with the clinical team.

In modifying Genia for the U.S., Oates and her team didn’t rely on what they thought it should look like. They turned to the experts, holding five focus groups with adolescents with CF, families of younger children with CF and the clinicians who care for them. The approach is called “health care service coproduction” and its central tenet is getting buy-in from both clinicians and patients. It’s part of the movement away from the paternalistic view of health and medicine in which the doctor alone drives the process.

The focus groups showed differences between what the clinicians wanted the app to do and what the families and patients asked for, something Oates said the team expected. “The clinicians don’t have the lived experience of managing the disease on a daily basis; our patients and families provided that. However, the clinicians told us what’s necessary to make it work in the clinic; capturing just the patient perspective would have led to an app that’s not workable in the clinical setting.”

Among the changes the focus group participants requested and the team implemented were adding a mental health tracker, making other trackers (i.e., nutrition, medication, physical activity) more specific, syncing the app with calendars and customizing the app with avatars, images and colors.

One thing parents wanted that the adolescents didn’t: the ability to see their child’s entries. On this point, the team decided that the account holder gets to determine the privacy setting and each family decides who the account holder is. “This is normal,” said Oates. “Our children are supposed to become independent and take over the management of their own health condition.”

She and her team are currently conducting a pilot study about the impact of the app’s use on clinical outcomes, with results expected later this year. So far, they are getting high praise from physicians, families and patients. For instance, the patients/families love that they can use the app to submit pre-visit reports instead of completing long paper forms in the waiting room. The clinical team, on the other hand, appreciates having a detailed view of patients’ symptoms or struggles before seeing them in clinic; it helps them understand what’s going on in their patients’ lives and better tailor treatment plans. The app also flags potential problems and shares them with the CF care team on a weekly basis, which allows for earlier intervention.

With the help of the Children’s CF care team, Oates hopes to transition Genia from research settings to a standard of care. Recently, the app was translated to Spanish and made available for both Android and Apple devices. This will allow it to reach a larger segment of CF families to help them manage daily care and better integrate their experiences in treatment plans.

Inside Pediatrics, Pulmonology

When It Takes A Village: A Unique Multidisciplinary Team For Aerodigestive Disease And Complex Conditions

Children’s of Alabama pediatric pulmonologist Tom Harris, M.D., left, and Reed Dimmitt, M.D., MSPH, right, director of the UAB Division of Pediatric Gastroenterology, are among the multidisciplinary team members who make up Children’s Aerodigestive Clinic.

Break down the word “aerodigestive” and you can understand why the condition is so complex and intertwined. Children with aerodigestive conditions often have overlapping disorders involving the upper airway, larynx, trachea, esophagus and lungs, all of which originally developed embryonically from a common source.

One patient may have symptoms affecting multiple systems. At most pediatric hospitals, each condition is treated separately; subspecialists typically focus on the organ of their expertise and not the child holistically.

At Children’s of Alabama’s Aerodigestive Clinic, families don’t need to make multiple appointments and repeated trips to the hospital to see a slew of medical professionals. Instead, they can see a multidisciplinary team of pediatric subspecialists during a single clinic visit and receive coordinated care. Children’s Aerodigestive Program is the only one in Alabama and one of just a few around the country.

“We felt there was a big gap in care, and that led to frustrations that maybe we weren’t meeting their needs,” explained clinic coordinator Ashley Chapman of why Children’s started the program. Chapman focuses on improving communication and facilitating access.

The result of better care has improved both patient and provider satisfaction. “Families appreciate that they don’t feel ‘bounced’ around the medical system,” said pediatric gastroenterologist Reed Dimmitt, M.D.

“Our team is a fun, collaborative group,” added pediatric pulmonologist Tom Harris, M.D. “Previously, we each treated the patients in a general clinic but were limited by our individual skill set. This approach allows us to lean on one another’s expertise, asking, ‘How can we improve care by working together?’”

Consider the triple endoscopy (direct laryngoscopy bronchoscopy, flexible bronchoscopy and esophagogastroduodenoscopy) with the ENT surgeon, pulmonologist and gastroenterologist all in the procedure room. Before, patients would need three separate procedures, requiring three times under general anesthesia with separate interpretations. Now, the three physicians meet together with the family post-procedure to discuss findings and deliver the management plan.

“It’s an additive model, but there’s also a synergy that occurs with everyone meeting together, which contributes to better outcomes,” said Dimmitt. “Collaborating with the multidisciplinary team,” he said, “pushes me to think outside the GI box.” The aerodigestive coordinator, speech pathologist and dietician are central to management plans, providing additional non-M.D. layers of coordination, expertise and pragmatic considerations.

The clinic offers in-person as well as telemedicine visits, and is growing fast, with referrals doubling in the past two years. “That’s also led to more complex patients,” added Dimmitt. “To meet these many needs, we spend a lot of time with the parents.”

The team receives referrals from a variety of sources, including inpatient subspecialists, community pediatricians and speech pathologists, among others. “My favorite referrals,” Harris said, “are families telling friends. That’s when we know we have succeeded.”

“What we hear from parents is that they are so thankful for the collaborative care, the time everyone spends and that their concerns are heard,” said Chapman.